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Summary

Predicting disease risk and progression is one of the main goals in many clinical research studies. 

Cohort studies on the natural history and etiology of chronic diseases span years and data are 

collected at multiple visits. Although kernel-based statistical learning methods are proven to be 

powerful for a wide range of disease prediction problems, these methods are only well studied for 

independent data but not for longitudinal data. It is thus important to develop time-sensitive 

prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a 

novel statistical learning method for longitudinal data by introducing subject-specific short-term 

and long-term latent effects through a designed kernel to account for within-subject correlation of 

longitudinal measurements. Since the presence of multiple sources of data is increasingly 

common, we embed our method in a multiple kernel learning framework and propose a 

regularized multiple kernel statistical learning with random effects to construct effective 

nonparametric prediction rules. Our method allows easy integration of various heterogeneous data 

sources and takes advantage of correlation among longitudinal measures to increase prediction 

power. We use different kernels for each data source taking advantage of the distinctive feature of 

each data modality, and then optimally combine data across modalities. We apply the developed 

methods to two large epidemiological studies, one on Huntington's disease and the other on 

Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a 

unique opportunity to combine imaging and genetic data to study prediction of mild cognitive 

impairment, and show a substantial gain in performance while accounting for the longitudinal 

aspect of the data.
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1 Introduction

Accurate prediction of current and future clinical status of a patient based on subject-specific 

clinical and biological markers is an important goal for early diagnosis and monitoring 

disease progression. Modern technologies offer opportunities to collect data from 

heterogeneous sources such as genetic data, imaging data, and clinical data including 

electronic health records. Therefore it is valuable to develop prediction rules that can 

accommodate heterogeneous sources of data to boost prediction power. Furthermore, many 

cohort studies on natural history and etiology of chronic diseases often span years and data 

may be collected at multiple visits. It is thus important to develop time-sensitive prediction 

rules that not only integrate data from multiple sources but also make use of the longitudinal 

nature of the data collected from the same subjects.

There is an extensive body of literature on longitudinal data analysis exploring the 

association between candidate predictors and outcomes measured repeatedly over time (See 

for example, Diggle et al., 2002). In these association analyses, primary goals are estimation 

and hypothesis testing of regression parameters which may not necessarily yield powerful 

prediction rules. The focus of the current work is on prediction of outcomes in future 

subjects or prediction of future observations on the same subject from longitudinal data with 

a potentially large number of predictors. For the purpose of prediction with longitudinal 

data, some previous research has focused on linear or quadratic discriminant analysis of 

longitudinal profiles or a sample of curves (e.g., James and Hastie 2001; Marshall and Baron 

2000; Luts et al. 2013). These papers aim to classify a functional curve into two groups and 

rely on either linear mixed effects models (Verbeke and Leseffre 1996; Marshall and Baron 

2000) or functional data analysis or their extensions (James and Hastie, 2001) to perform 

classification. In the past decades, there has been growing interest in using powerful 

machine learning methods to build effective predictive models for binary and continuous 

disease outcomes (Oquendo et al., 2012). Particularly, kernel-based methods such as support 

vector machine or support vector regression are proposed to classify longitudinal profile into 

groups (Pearce and Wand, 2009; Luts et al., 2012). However, disease outcomes in these 

approaches do not change with time so they are not applicable to classify clinical outcomes 

assessed repeatedly over time. Since most of the existing statistical learning methods assume 

the sample to be independent and identically distributed, there is a lack of literature on how 

to effectively incorporate within-subject dependence to improve prediction of future 

subjects' clinical outcomes or within-subject change especially when the clinical outcomes 

are binary.

In this paper, we introduce a novel statistical learning method to predict longitudinal binary 

outcomes in the multiple kernel learning (Lanckriet et al., 2004; Bach and Lanckriet, 2004) 

framework. Our method not only uses observed feature variables but also introduces subject-

specific unobserved latent variables to extract information from correlated outcomes and 
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build time-sensitive prediction rules. More specifically, we use multiple additive kernels for 

observed feature variables, which can account for heterogeneous data sources taking 

advantage of the correlation within each data modality, while at the same time, we account 

for within-subject correlation of longitudinal measurements by introducing subject-specific 

short-term and long-term latent random effects modeled through a separate kernel. In many 

biomedical studies, the observed feature variables only explain some proportion of 

variability in outcomes, and the gain from using latent random effects to extract information 

from the remaining unexplained variability can be substantial. The weights used for each 

kernel are tuned based on minimizing the overall loss, therefore we optimally combine data 

across modalities in a data-driven fashion. In addition to methods for training model, we 

also develop methods for predicting future outcomes through observed features and 

unobserved latent effects when longitudinal training data are available.

On one hand, depending on the choice of kernels, the proposed method has some similarity 

to semiparametric or nonparametric mixed effect models for longitudinal data. However, 

unlike traditional mixed models, our proposed method aims at prediction accuracy, allows 

greater flexibility through the use of kernel machines, and is relatively easy to scale up for 

large dimensional data. On the other hand, using different kernels for feature variables and 

latent variables shares the same advantages with multiple kernel learning methods which 

have been developed to handle the challenges of integrating different data sources (Pavlidis 

et al., 2002; Lanckriet et al., 2004; Yu et al., 2010; Zhang and Shen, 2012). Specifically, the 

latter treats each data source component, for example, genetic data, imaging data or clinical 

data, as belonging to separate kernel spaces and finds an optimal way to combine them for 

prediction. The multiple kernel methods have been shown to yield much improved 

performance as compared to using one single kernel in various biomedical applications (Yu 

et al., 2010). Although our proposed method uses multiple kernel algorithms, one significant 

difference from the above literature is that separate kernels are also applied to unobserved 

latent variables.

The paper is structured as follows. In Section 2, we propose a learning method to predict 

longitudinal binary outcomes based on the support vector machine with multiple kernels. In 

Section 3, extensive simulation studies are conducted to illustrate small-sample performance 

of the proposed method and compare with some existing approaches. In Section 4, we apply 

the developed method to analyze the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

data, where a unique opportunity is presented to combine various modalities of imaging and 

genetic data to distinguish subjects with mild cognitive impairment (MCI) from subjects 

with Alzheimer's Disease (AD), and we show a substantial gain in performance while 

accounting for the longitudinal correlation in the data. The proposed multiple kernel fusion 

with random effects proves to be effective in this application. Some remarks are provided in 

Section 5.

2 Multiple Kernel Fusion Learning for Longitudinal Data

We start by briefly introducing standard statistical learning through support vector machine 

with a single kernel, followed by incorporating a longitudinal component to the learning 
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through fusing two kernels, and lastly we discuss integration of multiple data sources 

through fusing multiple heterogeneous kernels.

2.1 Review of support vector machine

Let  denote a complete separable space for feature variables. The random feature variables 

X take values in , and the binary disease outcomes Y take values in ℝ. The goal of 

statistical learning is to train an optimal prediction function f :  → ℝ to predict Y given X 
for any future subject, where the performance of prediction is quantified by the prediction 

error defined as E[I(Y f(X) < 0]. Due to the non-smoothness of I(Y f(X) < 0), the optimal 

prediction function is usually obtained by minimizing the empirical version of some 

surrogate loss function. One such loss function most commonly used is the hinge loss, or the 

so called support vector machine (SVM, Vapnik, 1995), and it has been proven to be 

successful in a wide range of applications (Orru et al., 2012).

Assume that we have n independent observations (xi, yi), i = 1, …, n. With a linear 

prediction function f(xi) = 〈xi, w〉 + d, where the inner product 〈a, b〉 = aTb, the primal 

optimization problem of the SVM has the form (e.g., Hastie et al., 2009)

(1)

subject to the constraints with slack variables ξi

To accommodate nonlinear boundary, a Mercer kernel k(·, ·) is defined such that k(xi, xj) = 

〈Φ(xi), Φ(xj)〉, where Φ(·) is the mapping from the input space to a higher dimensional 

feature space, and 〈·, ·〉 is the inner product defined in the reproducing kernel Hilbert space 

(RKHS, Wahba 1990). The corresponding dual form becomes

leading to the decision functions of the form . Note that one 

advantage of solving the optimization from the dual form is that the explicit form of Φ(·) 

does not need to be known as long as the kernel function k(·, ·) is well defined (Kimeldorf 

and Wahba, 1970).

2.2 Proposed multiple kernel learning for longitudinal data

For longitudinal biomedical data, outcome measures on the same subjects are correlated 

after accounting for the observed fixed effects feature variables. Taking advantage of such 

correlation is expected to lead to improved prediction. Classical longitudinal analysis 

divides into two camps: estimating the marginal population-average effect, and estimating 
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the subject-specific effect given the random effects. For the former view, correlation among 

repeated measures is treated as nuisance parameter, while for the latter it is modeled through 

subject-specific random effects. In our setting, subject-specific classifications are of interest 

instead of population average effects, therefore we introduce random effects to the SVM 

framework to improve prediction in our proposed approach.

Assume that we have n independent subjects and the ith subject has ni visits. Let yij denote 

the disease outcome for the ith subject at the jth visit coded as “1” for diseased subjects and 

“−1” for non-diseased subjects. Let xij denote a vector of feature variables collected at the 

same visit. We introduce two latent random effects for subject i, a time-invariant effect aij, 

which aims to capture the long-term latent effect across all the visits from the same subject, 

and a time-varying effect bij, which attempts to account for short-term latent effect or local 

influence from recent history that depends on the time interval between visits. Therefore, for 

a subject with feature variables xij at time tij, a prediction rule with subject-specific random 

effects can be expressed as

where the prediction function has the form

(2)

Here, Φx(x) consists of some mapping from the input space  to a higher-order feature 

space (for example, the basis function associated with some reproducing kernel Hilbert 

space) and both Φa(a) and Φb(b) are nonlinear transformation of the latent effects which will 

be induced by some kernel functions defined for aij and bij, respectively in Section 2.3. For 

identifiability, we also assume that aij and bij are standardized random variables with mean 

zero and variance one. Clearly, since a and b are unobserved random variables, conventional 

SVM techniques cannot be directly applied.

When including the random effects into the model, the single kernel SVM becomes a multi-

kernel SVM with one kernel for fixed effects and two kernels for random effects. Following 

the multiple kernel learning framework, a weight parameter θ is then assigned to each kernel 

and a fused kernel is formed as a linear combination of kernels under an L2-norm 

regularization constraint on the weight parameters. The weights are chosen in a data-driven 

way to minimize the loss function under the fused kernels. Thus, the primal form in the 

feature space becomes

(3)
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As a remark, comparing the optimization problem for longitudinal data (3) with the original 

standard SVM primal form (1), we observe that the objective function for the former is a 

conic combination of the separate objective functions for the latter with a quadratic 

constraint. Furthermore, the resemblance with multiple kernel learning allows easy 

generalization to accommodate data from heterogeneous sources by using separate kernels 

for observed feature variables from each source. Such method incorporates prior knowledge 

on each source while performing integration. Contrary to concatenating all variables in a 

single kernel, using separate ones reflects prior knowledge that the feature variables from 

the same source have stronger correlations than with variables from difference sources. For 

example, assuming there are P data sources of fixed effects and two kernels for random 

effects, the corresponding primal form is

The computation of the multiple kernel learning is essentially a quadratically-constrained 

quadratic programming (QCQP) problem

(4)
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where kp(xijp, xklp) = 〈Φp(xijp), Φp(xklp)〉 is the kernel for the reproducing kernel Hilbert 

space for xijp, and ka(aij, akl) = 〈Φa(aij), Φa(akl)〉 and kb(bij, bkl) = 〈Φb(bij), Φb(bkl)〉 are 

kernel functions for some inner products defined for latent effects we discuss next.

2.3 Choice of kernel functions for latent effects

Here we introduce kernels to model the two random effects aij and bij respectively. Recall 

kernel matrix measures similarity between two observations, a natural choice of kernel 

function is the covariance structure of the random effects which can also be considered as 

the inner product with respect to its distribution function. Thus, we assume that the 

similarity between the latent effects from independent subjects is zero, the similarity 

between the long term random effects on the same subjects is a constant ρ, and the similarity 

between local short term random effects depends on the time interval between the two 

measurements. Specifically, to account for the long-term latent effects, we can consider aij 

to represent the common random effect shared across visits plus an independent random 

error component, and therefore the commonly shared random effect will contribute to 

prediction at each visit. Equivalently, construct elements in a kernel matrix as ka(aij, akl) = 1 

if i = k, j = l; ka(aij, akl) = ρ if i = k, j ≠ l; and ka(aij, akl) = 0 if i ≠ k. Next, in order to account 

for short term latent random effects, we assume an exponential covariance structure for bi. 

Thus, kb(bij, bkl) = exp{−α|tij−til|} if i = k; and kb(bij, bkl) = 0 if i ≠ k. The kernel function for 

ni long-term random effects ai = (ai1, ⋯, aini)
T and short term random effects bi = (bi1, ⋯, 

bini)
T with measurement time points (ti1, ⋯, tini)

T are defined as

where α is a scale parameter.

Under the above choice of kernels, we can optimize the dual form (4) using the quadratic 

programming. Earlier work suggests exhaustive search at given values of θ and treating the 

fused kernels as a new kernel in a standard SVM optimization problem. However, the 

computational burden is high. A computationally efficient algorithm for solving the 

optimization problem (4) was proposed in Yu et al. (2010) to solve for weights θ and α 

simultaneously. Specifically, the dual form (4) is solved under the Cauchy-Schwarz 

inequality as
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where γ = {αTYK1Yα, …, αTYKPYα, αTYKaYα, αTYKbYα}T, and the optimal weight 

parameters for the pth kernel is .

2.4 Prediction of future observations

For a longitudinal study, we distinguish two types of prediction of interest. We define type 

A prediction as predicting outcome for a new subject with the observed feature variables x 
only and no prior history information, for example, prediction for a new subject at the 

baseline visit. We define type B prediction as predicting outcomes at future follow-up time 

points for an existing subject with observed prior visit outcomes and feature variables x. One 

of the main components of our proposed learning is to extract information from existing 

correlated outcomes to improve future prediction. For each type of the prediction, we 

discuss a different strategy in predicting the outcomes.

For type A prediction on a new subject with feature variables xi, directly using designed 

kernel functions and the fitted prediction function (2) is equivalent to using fixed effects 

only to predict the outcome and set the random effects at their mean level, zero. This is 

because the designed kernel functions ka and kb for random effects have non-zero values 

only between two visits on the same subject. In type A problem, the existing subjects and 

the new subject are independent, and therefore the fitted score from solving the dual form 

(4) do not involve random effects, which corresponds to using the population mean value for 

all subjects with fixed effects xi to perform prediction.

To include random effects for type A prediction, we repeatedly draw independent random 

effects ai and bi from a working Gaussian distribution. For each random draw, we computed 

the predictive function as in (2) and classify the outcome using the sign of f(xi, ai, bi). The 

final predicted outcome is based on a majority vote: if more than 50% of random draws lead 

to positive predicted outcomes, the final predicted outcome would be positive, and otherwise 

negative.

For type B prediction, we use an existing subject's predictors and outcomes at prior visits to 

predict their future follow up outcomes. We can then directly compute the random effects 

for the same subject at a future time t* using the designed kernel matrices Ka and Kb, and 

the fitted predictive function is obtained from the solutions to (4).

3 Simulation Studies

In this section, we conducted simulation studies to compare the empirical performance of 

multi-kernel SVM with several standard alternatives for analyzing longitudinal data. We 

started with a setting where we generated data from a single data source. The first simulation 

setting and results are summarized in the Supplementary Materials Section A.1. In order to 
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mimic the real data application where the data are complex and from heterogeneous sources, 

in simulation setting 2, we generated the dichotomous outcomes from the following model:

where Tij is the age of the ith subject at the jth visit. The age was simulated from a uniform 

distribution ranging from 10 years old to 70 years, and the two subsequent visits from a 

subject were generated to be approximately 3 years apart. Here Zi is a vector of time-

invariant binary markers of the ith subject which remain the same at each visit; X1i is a 

vector of time-invariant continuous markers of ith subject uniformly ranging from −2 to 2; 

and X2ij is a vector of time-varying continuous markers with a correlation ρ(X2ij, X2ik) = 

exp(−α|tij − tik|) with α = 1 between the jth and kth visits of the ith subject. Vector 

 are the mapping of (X1, X2) in the new feature space corresponding to a 

polynomial kernel with degree 2, e.g., the inner product < u*, υ* > in the feature space 

equals K(u, υ) in the original space, where K is a polynomial kernel with degree 2. In the 

Supplementary Materials Figure A2 we demonstrated a typical set of X when its dimension 

is 2. The boundary for the two groups is nonlinear in the original space (top panel), while in 

the new 3-dimensional feature space the boundary becomes a separating plane which is 

linear (bottom panel). Markers Wi is a time-invariant 3-dimensional vector randomly located 

either on the outer sphere with a radius equal to 2 or on the inner sphere with a radius equal 

to 1 (with equal probability, and each radius has a small random error) (Supplementary 

Materials Figure A1). A single radial kernel SVM can generate a sphere-shaped boundary 

and perfectly separate the two groups of W’s. Therefore the corresponding oracle kernels to 

use for the fixed effects in this setting are a linear kernel for T, a linear kernel for Z, a 

polynomial kernel with degree 2 for X, and a radial kernel for W.

Subject-specific latent effects ai and bi are subject-specific random effects. ai is generated 

from MV N(0, Σa), where Σa is a correlation matrix with compound-symmetric structure (ρ 

= 0.5), and bi is generated from MV N(0, Σb), where Σb is a correlation matrix with 

exponential correlation structure, e.g., ρj,k = exp(−α|tj − tk|) with α = 1. εij are normally 

distributed random errors of the ith subject at the jth visit.

We conducted two types of prediction for different purposes. In type A prediction we 

generated samples with a size of n = 500 subjects, each having 4 visits. Two-thirds of the 

subjects are included in the training set and the remaining one-third as the testing set. In all 

the simulations here, we used cross-validation to choose parameter ρ in fitting the long term 

random effects kernel introduced in Section 2.3 by grid search. It takes about 60 minutes to 

run one simulation round of the multiple kernel SVM (a sample size of 500, 4 visit time 

points and 6 kernels for different data sources) with 5-fold CV to select from 4 candidate 

values for a parameter on a workstation (Intel Xeon 2.30 Ghz CPU). We present the results 

in Figure 1. In the top panel we compared a total of six methods, a logistic regression, a 

generalized mixed effects regression, and four different SVMs, including a fixed-effects 

single radial kernel SVM (concatenate all feature variables in a single radial kernel; “fixed-

effects” refers to ignoring random effects in both model fitting and prediction), a fixed-

effects multiple radial kernel SVM (one separate radial kernel for each group of variables 
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from one source), a fixed-effects multiple oracle kernel SVM, and a mixed-effects multiple 

oracle kernel SVM (“mixed effects” refers to including kernels for random effects in both 

model fitting and prediction). In this case, the logistic regression and the generalized mixed 

effects regression perform substantially worse than the SVM based methods in terms of all 

fit indices: accuracy (1-misclassification rate), sensitivity, specificity, positive predictive 

value (PPV) and negative predictive value (NPV). In addition, the variability of the former 

two approaches are much larger than the latter, indicating that the SVM based methods 

provide more stable predictions.

When comparing the four SVM-based approaches, the single radial kernel SVM performs 

the worst (results for the single linear or polynomial kernel are even worse than using radial 

kernel, so they are not shown here), indicating the advantage for using separate kernels for 

fixed effects when data are heterogenous. Using multiple oracle kernels greatly improves the 

performance comparing to using multiple radial kernels (same type of kernels), which 

confirms the importance of using appropriate kernels for data from different sources. When 

comparing the performance of fixed-effects vs. mixed-effects multiple oracle kernel SVM, 

we see that including kernels for random effects reduces variability for all the fit indices and 

improves or maintains their mean values. A paired t-test comparing fixed-effects vs. mixed-

effects multiple oracle kernel SVM shows a significant decrease in misclassification rate (p 

< 0.001).

In type B prediction we generated samples with a size of n = 500 subjects, each having 6 

visits. The first 3 visits of each subject are used as the training set and the rest 3 visits as the 

testing set. We predicted the subject-specific outcomes for the last 3 visits for each subject. 

The bottom panel of Figure 1 compares the performance of multiple oracle kernel SVM with 

or without random effects to logistic regression and generalized mixed effects regression. A 

paired t-test comparing fixed-effects vs. mixed-effects multiple oracle kernel SVM shows a 

significant decrease in misclassification rate (p < 0.001). The magnitude of improvement is 

greater than that in type A prediction, suggesting that the developed method is more 

powerful when predicting subject-specific outcomes when some outcomes on the prior visits 

of the same subject are available.

In order to examine the effect of kernel function misspecification, we conducted two 

sensitivity analyses with mild and moderate misspecification of Kb. For these sensitivity 

analyses, to save computational burden we adopted a practical approach where we used 

cross-validation to select ρ in Ka in the first few replications and fixed their values at the 

chosen ones for other replications. Based on our experience for simulations in Figure 1, the 

results do no differ substantially between the practical approach (results not shown) and full 

scale cross-validation (identical up to 2 decimal places). Simulations with full scale cross-

validation are expected to be similar or better. The short-term time-invariant random effects 

were generated to follow an AR-1 structure
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while when fitting the model we misspecify the kernel matrix as the exponential structure 

for Kb in Section 2.3. When the autocorrelation parameter for AR-1 structure ρb = 0.85, Kb 

is more similar to that under exponential structure for the model fitting, which we 

considered as a mild misspecification. When ρb = 0.5, the difference in Kb between AR-1 

and exponential structure is larger, which we considered as a moderate misspecification. We 

compared 4 SVM models for type A prediction: a fixed-effects multiple radial kernel SVM, 

a fixed-effects multiple fused kernel SVM (“fused” means all the kernels in the model were 

correctly specified except for Kb, if random-effects included), a population-mean level 

multiple fused kernel SVM (“population-mean level” where we included kernels for random 

effects in only model fitting but not the prediction), and a mixed-effects multiple fused 

kernel SVM. We compared 2 SVM models for type B prediction (a fixed-effects and a 

mixed-effects multiple fused kernel SVM). The results are shown in Figures 2 and 3. We 

can see that the results under both mild and moderate misspecification are pretty similar to 

those without misspecification, indicating that the performance (especially type A 

prediction) is not sensitive to the choice of kernel function as long as the tuning parameters 

are chosen in a data-driven way.

4 Application to ADNI data

Data used in the preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 by the National Institute on Aging, the National Institute of Biomedical Imaging and 

Bioengineering, the Food and Drug Administration (FDA), private pharmaceutical 

companies and non-profit organizations. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging, positron emission tomography, other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimer's disease (AD).”.

In 2009, efforts to integrate genetic research related to ADNI biomarkers were planned and 

carried out to assess genes beyond ApoE, the largest known genetic risk factor for AD 

(Ashford, 2004). Since then, genetic and imaging data are available to contribute to the 

understanding of biological etiology of AD and MCI. The proposed multiple kernel 

framework exploits this unique opportunity to combine imaging and genetic data to predict 

the progression of MCI and early AD. Previous studies showed that some imaging 

biomarkers are important in predicting conversion from MCI to AD and early AD 

progression (Devanand et al., 2008; Hampel et al., 2008). It is conceivable that imaging 

variables are more correlated with each other than with genetic markers. If both types of 

data are concatenated in a single kernel, for instance, a polynomial kernel, unnecessary 

polynomial correlation will be imposed between imaging and genetic markers. In a multiple 

kernel learning with separate kernels, however, such correlation is reduced, avoiding 

overfitting and unwanted complexity. In our framework, one could use existing kernels 

designed for imaging data and genetic data separately. Such analyses has not been reported 

in ADNI literature before.

Our analysis goal is to distinguish the subjects who have MCI and the subjects who have 

dementia using demographic, clinical, imaging, and genetic markers. Our further inclusion 

Chen et al. Page 11

Biometrics. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu


criteria of samples were: subject’s disease status being MCI or dementia, having 4 or more 

follow-up records, and having complete imaging and genetic data. The sample used in our 

analysis contains 213 participants from all 3 phases with 1055 longitudinal follow-up 

records. The key data were merged from various case report forms and biomarker lab 

measures across the ADNI protocols (http://www.adni-info.org/).

The feature variables we used include demographic variables (age, gender, and education 

level), clinical variables (clinical dementia rating sum of boxes scores, the Alzheimer’s 

Disease Assessment Scale (11 and 13), mini-mental state examination, Rey Auditory Verbal 

Learning Test and functional assessment questionnaire), imaging markers (volume measures 

of ventricles, hippocampus, entorhinal cortex, and intra-cranial volume), and genetic 

markers (ApoE4 and 16 SNPs on the PICALM gene). The PICALM gene was reported to be 

a causal gene for AD (Harold et al., 2009), and therefore the SNPs in this gene were 

included in our analyses. We used four separate kernels for each source of variables in the 

multiple fused kernel SVM: a polynomial kernel with degree two for age at each visit, a 

radial kernel for demographic variables and clinical variables, a linear kernel for imaging 

variables, and an identity-by-state (IBS) kernel for genetic markers. The IBS kernel is 

specially designed to measure the similarity between two subjects' SNPs based on their 

identity by state information and has been proven to be useful in genome-wide association 

studies (Wu et al., 2010). The other kernel types were selected by small scale cross-

validation. The kernels for the short-term and long-term latent effects were specified as in 

Section 2.3, where α and ρ were selected by small scale cross-validation.

The top panel of Figure 4 summarized the results of a logistic regression, a fixed-effects 

single radial kernel SVM, a fixed-effects multiple fused kernel SVM, and a mixed-effects 

multiple fused kernel SVM for type A prediction. All the feature variables and the pairwise 

interaction terms for demographic and clinical variables were included in logistic regression. 

The performance of multiple kernel SVMs improves upon the logistic regression in terms of 

all the fit indices, and upon the single radial kernel SVM in terms of accuracy, specificity, 

and PPV. Sensitivity of the single kernel SVM is slightly better than multiple kernel SVMs. 

The inclusion of latent random effects to a multiple fused kernel SVM makes little 

difference in terms of type A prediction. The bottom panel of Figure 4 compares the fixed-

effects and mixed-effects multiple fused kernel SVM for type B prediction. In this case, 

accounting for random effects in the multiple fused kernel SVM leads to a substantial gain 

in accuracy, sensitivity and NPV, which reflects the ability of using the latent random 

effects kernel matrix to extract correlated similarity information of the outcomes on the 

same subject (within-subject outcomes are often similar to some extent). In this example, the 

fixed-effects feature variables explained some proportion of variability while the latent 

effects improve prediction by extracting information from the unexplained variability in type 

B prediction. Specificity and PPV for the mixed-effects SVM is slightly lower, however, to 

a much lesser extent.

Another real data example based on PREDICT-HD study (Paulsen et al., 2008) can be found 

in Supplementary Materials Section A.2.
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5 Discussion

In this work, we present new statistical learning methods for longitudinal data. While we 

adopted a MKL algorithm similar to Yu et al. (2010), one significant novelty of our 

approach is to construct kernel functions via latent random effects which can account for 

both long-term and short-term dependence. Conventional approaches for analyzing 

longitudinal data include generalized estimating equations which aim at estimating 

population average effects, and generalized linear mixed effects model regression which aim 

at estimating subject-specific effects. These regression-based methods focus on estimating 

the association between the outcome and the predictors, while the large margin-based 

statistical learning approaches directly focus on classification and prediction. We compared 

our methods to generalized mixed effects regression since our goal is the subject-specific 

prediction of disease status. Our proposed kernel-based learning method offers an effective 

alternative especially when the number of predictors is large and it can be easily scaled up. 

A key feature is to embed correlation of longitudinal observations into kernel matrices and 

take advantage of multiple kernel learning methodologies. With a single data source and a 

relatively small amount of predictors, the conventional approaches may perform adequately. 

However, when there are multiple heterogeneous data sources, the improvement of the 

proposed method is more evident. Making connections to multiple kernel learning allows the 

proposed method to enjoy easy integration of heterogeneous data sources to boost 

information while accounting for the longitudinal data structure. We have shown through 

our simulation and real data analyses that when prior scientific knowledge suggests distinct 

distribution of feature variables, treating each component with a separate appropriate kernel 

and then combining in an optimal way allows substantial information gain.

To account for the longitudinal feature of data, we discuss two types of novel prediction 

procedures here (type A and type B prediction) to utilize latent effects in the prediction. We 

show that by extracting information on the distributions of the random effects, we improve 

prediction both for future subjects and for future outcomes on the same subject given feature 

variables and past outcomes. However, for longitudinal studies, the type B problems are 

more commonly encountered in applications where the outcome at a follow-up visit for the 

same subject is desirable, and our learning method is more effective than ignoring 

correlation among observations. When the interest is on predicting outcomes for a new 

subject at the baseline time-point, conventional approaches may work as well. The choice of 

covariance structure and the choice of appropriate kernel functions is related to the choice of 

the best representation of the kernel space. There is no consensus on these issues in the 

current literature which warrants future study on these matters.

We adopt the use of L2-norm kernel fusion which leads to a non-sparse integration of 

multiple data sources, which may be more appealing in biomedical applications where it is 

believed there is no clear “winner” and each data modality contributes partial information to 

the prediction. Besides the L2-norm on weights θp, other regularization, such as L1-norm and 

L∞-norm, can also be imposed in the kernel fusion. L1-norm generates a sparse integration, 

which can be used for data source selection when the number of data sources is large and no 

prior information on which source is more predictive is available. L∞-norm assigns the 
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dominant weight parameter to only one kernel, which can be used when there is the need for 

a unique data source competition.

Daemen and Moor (2009) proposed a kernel function for clinical variables which computes 

the rescaled similarity. Our proposed algorithm is different from Daemen and Moor (2009) 

in that their final kernel matrix is a simple average of individual kernels, while our algorithm 

finds the optimal weight for each kernel matrix in a data-driven way. The kernels for 

random effects we proposed are based on subject-specific latent effects so they capture the 

temporal similarity of the observations for the same subject, while Daemen and Moor (2009) 

did not handle longitudinal data.

In our proposed method, the decision function takes an additive structure of the feature 

variables and the latent effects. A natural extension will be to include the interactions 

between them in the prediction rule. The proposed algorithm can be easily modified to 

handle this issue through tensor products of kernel matrices. Here we do not assume a 

distribution for random effects, but uses kernel functions to capture correlation. Although in 

practice the optimal kernel types to use may be unknown, a pragmatic solution might be to 

consider several different combinations of kernel types and choose the one with the smallest 

misclassification rate. Lastly, the kernel matrices for ai and bi may be misspecified so that it 

will be interesting to further study the robustness of the prediction rule to the specification of 

these matrices.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation setting 2 (multiple data sources). Top panel presents type A prediction of new 

subjects (left to right): 1-logistic regression, 2-generalized mixed effects regression, 3-single 

radial kernel SVM (fixed-effects), 4-multiple radial kernel SVM (fixed-effects), 5-multiple 

oracle kernel SVM (fixed-effects), 6-multiple oracle kernel SVM (mixed-effects). Bottom 

panel presents type B prediction of outcomes at future visits on the same subjects (left to 

right): 1-logistic regression, 2-generalized mixed effects regression, 3-multiple oracle kernel 

SVM (fixed-effects), 4-multiple oracle kernel SVM (mixed-effects).
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Figure 2. 
Sensitivity analysis (multiple data sources): mild misspecification for random effects. Top 

panel presents type A prediction of new subjects (left to right): 1-multiple radial kernel 

SVM (fixed-effects), 2-multiple fused kernel SVM (fixed-effects), 3-multiple fused kernel 

SVM (pop. mean), 4-multiple fused kernel SVM (mixed-effects). Bottom panel presents 

type B prediction of outcomes at future visits on the same subjects (left to right): 1-multiple 

fused kernel SVM (fixed-effects), 2-multiple fused kernel SVM (mixed-effects).
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Figure 3. 
Sensitivity analysis (multiple data sources): moderate misspecification for random effects. 

Top panel presents type A prediction of new subjects (left to right): 1-multiple radial kernel 

SVM (fixed-effects), 2-multiple fused kernel SVM (fixed-effects), 3-multiple fused kernel 

SVM (pop. mean), 4-multiple fused kernel SVM (mixed-effects). Bottom panel presents 

type B prediction of outcomes at future visits on the same subjects (left to right): 1-multiple 

fused kernel SVM (fixed-effects), 2-multiple fused kernel SVM (mixed-effects).
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Figure 4. 
ADNI study. Top panel presents type A prediction of new subjects (left to right): 1-logistic 

regression, 2-single radial kernel SVM (fixed-effects), 3-multiple fused kernel SVM (fixed-

effects), 4-multiple fused kernel SVM (mixed-effects). Bottom panel presents type B 

prediction of outcomes at future visits on the same subjects (left to right): 1-multiple fused 

kernel SVM (fixed-effects), 2-multiple fused kernel SVM (mixed-effects).
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